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Introduction 
The Photoacoustic Spectroscopy (PAS) [1], or more 

generally the Photothermal Spectroscopy [2,3], are non-
destructive testing methodologies that have been applied 
for the thermal and optical characterization of materials 
among other applications [2-5]. 

The photoacoustic effect is the basic phenomenon 
upon which PAS is built, and it occurs when a material 
sample placed inside a closed cell filled with air is 
illuminated with periodically interrupted light. The light 
absorbed by the sample is converted into heat through a 
nonradiative de-excitation process. The periodic flow of 
heat into the air chamber of the cell produces, as an 
acoustic piston, pressure disturbances in it, which can be 
detected by a microphone mounted at the cell wall. In the 
model developed by Rosencwaig and Gersho [6], known 
as RG theory, this is the only phenomenon taken into 
account in the PAS signal. 

In a previous work [7] we used an implicit inverse 
problem formulation, and the Levenberg-Marquardt 
method, for the PAS with the direct problem modeled 
with the RG theory. As synthetic experimental data it was 
used only the amplitude of the steady periodic temperature 
established at the surface of the material sample that is 
next to the air chamber of the closed photoacoustic cell. 
We were able to estimate, separately, the thermal 
diffusivity, α , the thermal conductivity, k , and the 
optical absorption coefficient, β , of the material under 
analysis. However, it was not possible to estimate any pair 
of coefficients simultaneously. 

In [8] we extended our previous results by 
considering also as experimental data the phase-lag 
between the temperature at the sample-gas interface and 
the modulated light source. An improvement on the 
solution of the inverse problem was observed (smaller 
confidence bounds) when each parameter was estimated 
separately, except for the thermal conductivity, due to the 

null sensitivity of the phase-lag with respect to this 
parameter. The simultaneous estimation of ( )βα , was 
performed but the estimated values for the unknowns were 
corrupted by the amplification of the error present in the 
experimental data. 

In [9] a one parameter family of regularization terms 
constructed with Bregman distances based on the q-
discrepancy function was implemented in the formulation 
and solution of PAS as an inverse problem. The original 
idea was improved by the proper weighting of the 
unknowns to be determined. We have focused on the 
simultaneous estimation of the sample thermal 
diffusivity,α , and optical absorption coefficient, β . The 
results were significantly improved in comparison to our 
previous works [7,8]. 

In the present work we use Artificial Neural 
Networks for the estimation of the thermal diffusivity of a 
reference material [10]. 

 
Direct Problem 

In a cylindrical closed photoacoustic cell the sample of 
the material under analysis is placed upon a backing 
material, and the other boundary of the sample adjoint to 
the air chamber of the cell, is exposed to an incident 
modulated light with intensity 
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where 0I is the maximum intensity of the incident light, 

and ω  is the angular frequency of the chopping 
mechanism. 

It is assumed that the light doesn’t go through any 
interaction within the air chamber and is fully absorbed by 
the material sample according to Beer’s law 
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where β is the optical absorption coefficient. 

The volumetric heat generation at the sample due to 
the light absorbed is given by 
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If we know the optical and thermal properties of the 

sample, the thermal properties of the other materials in the 
photoacoustic cell, the physical dimensions of the backing 
material, sample and air chamber, the frequency of the 
chopping mechanism, and the intensity of the incident 
light, then from the heat conduction problem in the 
photoacoustic cell we calculate the values for the 
amplitude and phase-lag of the temperature at the 
interface sample-gas between the material and the air 
chamber [6,9]. 

 
Inverse Problem 

In the present work we considered the inverse problem 
of estimating the thermal diffusivity of a reference 
material with an Artificial Neural Network [10].  

In Fig. 1 is shown the error in the training stage of the 
neural network as a function of the epoch. Each epoch 
represents the presentation of the full set of patterns used 
in the training. The patterns consisted on the amplitude 
and the phase-lag of the temperatures at the sample-gas 
interface. 
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Figure 1 - Error in the training stage of the Artificial 
Neural Network. 

 

 
Conclusions 

From the sensitivity analysis we could forecast that the 
simultaneous estimation of the thermal and optical 
properties is a difficult task. Such difficulty was also 
confirmed in our previous works. Therefore, we have 
opted in the present work to estimate only one parameter, 
the thermal diffusivity. The Artificial Neural Network 
developed for that purpose was very successful. 
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